Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.

Identifieur interne : 002670 ( Main/Exploration ); précédent : 002669; suivant : 002671

Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.

Auteurs : Sunita Kumari [États-Unis] ; Doreen Ware

Source :

RBID : pubmed:24205361

Descripteurs français

English descriptors

Abstract

Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.

DOI: 10.1371/journal.pone.0079011
PubMed: 24205361
PubMed Central: PMC3812177


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.</title>
<author>
<name sortKey="Kumari, Sunita" sort="Kumari, Sunita" uniqKey="Kumari S" first="Sunita" last="Kumari">Sunita Kumari</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cold Spring Harbor Laboratory, Cold Spring Harbor, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ware, Doreen" sort="Ware, Doreen" uniqKey="Ware D" first="Doreen" last="Ware">Doreen Ware</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24205361</idno>
<idno type="pmid">24205361</idno>
<idno type="doi">10.1371/journal.pone.0079011</idno>
<idno type="pmc">PMC3812177</idno>
<idno type="wicri:Area/Main/Corpus">002407</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002407</idno>
<idno type="wicri:Area/Main/Curation">002407</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002407</idno>
<idno type="wicri:Area/Main/Exploration">002407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.</title>
<author>
<name sortKey="Kumari, Sunita" sort="Kumari, Sunita" uniqKey="Kumari S" first="Sunita" last="Kumari">Sunita Kumari</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cold Spring Harbor Laboratory, Cold Spring Harbor, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ware, Doreen" sort="Ware, Doreen" uniqKey="Ware D" first="Doreen" last="Ware">Doreen Ware</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Brachypodium (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sorghum (genetics)</term>
<term>TATA Box (MeSH)</term>
<term>Transcription Initiation Site (MeSH)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Biologie informatique (MeSH)</term>
<term>Boite TATA (MeSH)</term>
<term>Brachypodium (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Site d'initiation de la transcription (MeSH)</term>
<term>Sorghum (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Zea mays (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Sorghum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Sorghum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Brachypodium</term>
<term>Computational Biology</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Promoter Regions, Genetic</term>
<term>Sequence Analysis, DNA</term>
<term>TATA Box</term>
<term>Transcription Initiation Site</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Biologie informatique</term>
<term>Boite TATA</term>
<term>Brachypodium</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Site d'initiation de la transcription</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24205361</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.</ArticleTitle>
<Pagination>
<MedlinePgn>e79011</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0079011</ELocationID>
<Abstract>
<AbstractText>Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumari</LastName>
<ForeName>Sunita</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ware</LastName>
<ForeName>Doreen</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058431" MajorTopicYN="N">Brachypodium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="Y">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016385" MajorTopicYN="N">TATA Box</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024363" MajorTopicYN="N">Transcription Initiation Site</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24205361</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0079011</ArticleId>
<ArticleId IdType="pii">PONE-D-13-06354</ArticleId>
<ArticleId IdType="pmc">PMC3812177</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 1998 Jan 1;12(1):34-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9420329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 May 13;264(5161):933-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8178153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2012 Sep;43(3):1141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22842750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Jul 9;98(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10412974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Feb;18(2):60-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7892207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D82-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4220-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jul 6;317(5834):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2008;:453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18229707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Oct 15;16(20):2583-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12381658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 Sep;12(9):1612-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 Jan;8(1):241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3336359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Mar 17;434(7031):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15735639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Feb;18(2):310-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Dec;34(Pt 6):1047-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 14;447(7146):799-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17571346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Aug 28;281(4):663-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9710538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Jan;231(2):226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1736093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(20):5943-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17068082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1997 Sep;7(9):861-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9314492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Feb 1;21(3):307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Sep;22(6):985-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jul;20(13):4754-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Mar 5;116(5):699-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15006352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Oct;60(2):350-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1987 Jul 14;909(2):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3593729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Nov;18(11):6571-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matrix Biol. 2004 May;23(2):87-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15246108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Oct;9(10):3101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1698607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Mar 10;296(5):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 15;274(3):1791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Mar;19(3):2130-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Oct 1;15(19):2503-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11581155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Oct;18(5):333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21745829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jun 30;81(7):1115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7600579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D108-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Mar 15;10(6):711-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8598298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jan 5;267(1):610-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1730621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul;36(12):4137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15733318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Sep;21(9):327-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8870495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Oct 1;30(19):4145-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12364593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jul;38(7):830-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16783381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jun 1;24(11):1325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2011 Apr 15;475(2):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21277957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Expr. 1995;4(3):111-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jan 5;264(1):220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2642473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2009 Mar;52(3):294-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8990153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Nov 27;320:145-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Jun;21(3):344-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1300-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1986 Oct 10;14(19):7581-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3774539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2006 Jan;83(1):38-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Nov 13;216(2):729-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7488171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(10):3401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2004 Jun 1;5(1):34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9 Suppl 2:S3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18831794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Aug 15;21(16):3448-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 May;21(5):707-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21367940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Aug;6(8):1123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Mar 1;389(1):52-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17123746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(12):3821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev Dev Biol. 2012 Jan-Feb;1(1):40-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23801666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jun;38(6):626-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003;19 Suppl 1:i283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12855471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D977-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20222994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Oct 21;269(42):26575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2007 Jan 23;2:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 4;272(14):9573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9083102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jan;16(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16344566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Jan 1;13(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9887099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Oct 26;28(2):337-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Carcinog. 2001 Oct;32(2):92-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11746821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 3;324(5923):92-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Mar;21(5):1593-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Jan 19;3(1):e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17238282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Dec 22;270(51):30249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8530439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Sep;22(9):501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Oct 27;164(2):323-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7590351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):307-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jul 1;18(13):1606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Mar 5;218(1):55-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2002507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 1997 Aug;8(8):554-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9250859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Oct;10(10):5177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2398888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(1):190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20843783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011;7(1):e1001274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21249180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Sep 9;269(36):22647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8077216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 16;313(3):612-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14697235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Nov 25;398(1):113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8946963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Aug 25;15(16):6643-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3628002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Jun;20(3):253-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Sep;36(16):5221-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Silico Biol. 2002;2(1):S17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11808874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jun 5;267(16):11513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1597478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1999 Jun;11(3):330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10395559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Oct 15;19(20):2418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16230532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(13):4255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jan 4;19(1):25-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10619841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2006 May 19;1:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16722558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:449-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Feb 4;269(5):3775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17346352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 1;13(1):147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12934013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10B):2093-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Mar 31;368(6470):466-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8133894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(12):RESEARCH0087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12537576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;5(1):201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14709165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Mar 15;28(6):1439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10684940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Feb;21(2):182-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Dec;34(Pt 6):1051-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sheng Wu Gong Cheng Xue Bao. 2009 Mar;25(3):336-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19621571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Mar;27(5):1844-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 May;21(5):775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 15;327(5963):335-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1995 Oct;36(7):1281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8564300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2002 Sep 30;34(4):259-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12515390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 30;131(5):831-2; author reply 832-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 Dec 2;1129(1):83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1721839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(18):6219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Aug 26;36(34):10581-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9265640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Nov 15;11(22):3020-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2012;2012:bar056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22374386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Apr 20;212(4):563-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2329577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D690-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jan 12;271(2):918-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Nov;25(21):9674-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jan;169(1):161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(8):e807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2009 Dec;5(12):1758-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Mar;25(3):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10694875</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ware, Doreen" sort="Ware, Doreen" uniqKey="Ware D" first="Doreen" last="Ware">Doreen Ware</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Kumari, Sunita" sort="Kumari, Sunita" uniqKey="Kumari S" first="Sunita" last="Kumari">Sunita Kumari</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002670 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002670 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24205361
   |texte=   Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24205361" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020